Renewable Water Resources Proposed Export from San Luis Valley Estimate of Costs and Project Challenges

Kelly DiNatale, PE, D. WRE, BCEE, CLM DiNatale Water Consultants February 2022

Examples of DiNatale Water Experience applied to this analysis

Examples DiNatale Water Consultants Water Supply Planning Experience

Local Supply Planning and Operations

Integrated Water Resources Plans
Water Conservation Plans
Climate Change Impacts
Raw water system operations and water accounting

Water Quality

Raw water quality
Reservoir monitoring
Water quality management
In-lake water quality management
Watershed management
Wildfire impacts

Water Supply Planning and Operations

Valuations and Financial Analysis

Water rights valuations

Storage, Pipeline and pump station valuations

Water Rates and Tap Fee Analysis and Recommendations

State and Regional Planning

Colorado Statewide Water Supply Initiative

Rio Grande Basin Implementation Plan

Grand River Dam Authority
Comprehensive Plan

Oklahoma Comprehensive Water Plan

DiNatale Water Consultants Federal Environmental Impacts Statements and Assessments

Halligan and Seaman Reservoirs
Northern Integrated Supply Project (NISP)

Third Party Contractor to the Army Corps for Environmental Statement

Omaha District

Rio Grande Reservoir

Applicant for Forest Service Environmental Assessment and Corps 404 permit

> Rio Grande National Forest Corps Albuquerque District

Federal
Environmental
Permitting and
Federal Guidance

Lake Ralph Hall (Texas)

Third Party Contractor to the Army Corps for Environmental Statement

Southwest District

EIS Planning for the Army Corps

Hydrologic Modeling Guidelines for Federal EIS's

Risk and Reserve Assessment/Water
Supply Planning Criteria for Federal ElS's

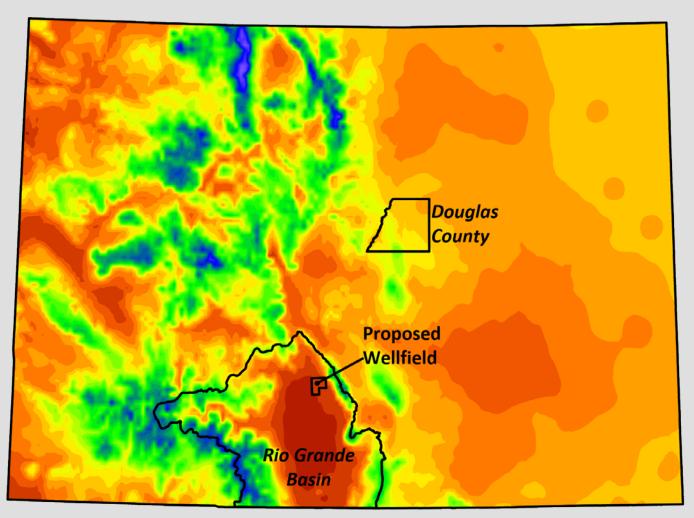
(For the Army Corps)

DiNatale Water Consultants - some past and current Clients

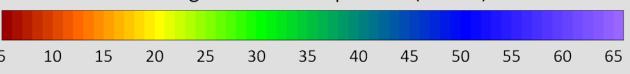
- City of Grand Junction
- City of Santa Fe
- City of Oklahoma City
- > Town of Erie
- East Cherry Creek Water and Sanitation District
- Arapahoe County Water and Wastewater Authority
- United Water and Sanitation District
- Cherokee Metro District
- Rio Grande Basin Roundtable
- Conejos Water Conservancy District
- San Luis Valley Irrigation District
- Bijou Irrigation District
- Grand River Dam Authority
- Colorado Water Conservation Board
- Oklahoma Water Resources Board
- Archdiocese of Denver
- Ranchers, farmers, golf courses and developers
- Past experience include work for Castle Pines North, Castle Rock, Douglas County, South Metro Water Supply Authority, Farmers Reservoir Irrigation Company

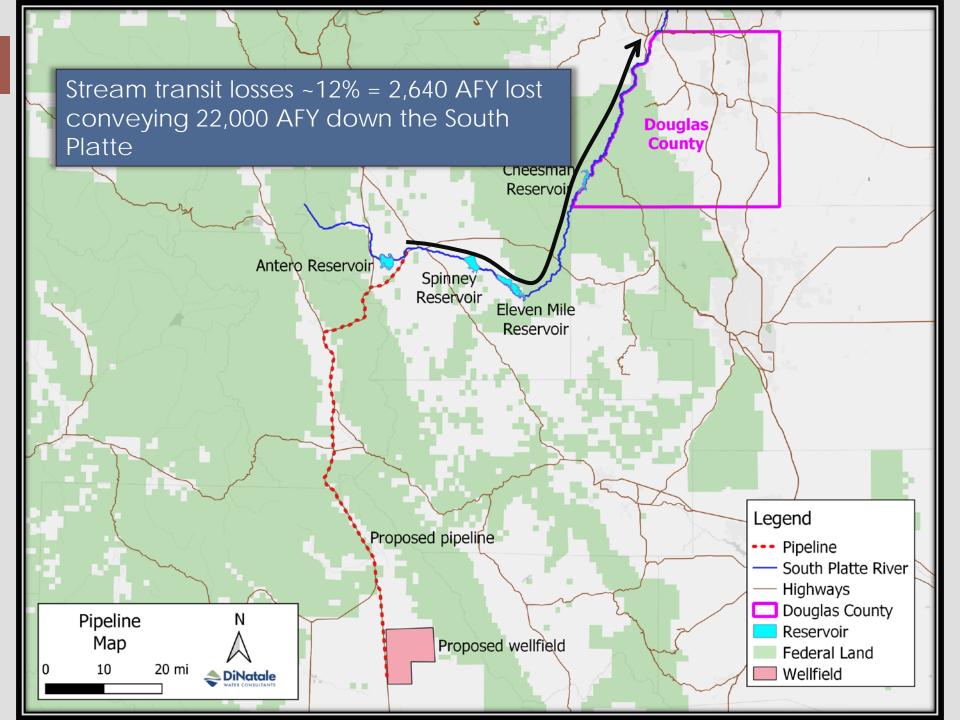
Criteria for Screening the San Luis Valley Export and other Alternatives

Water Court Risks - can it be decreed with acceptable terms? Reliability of Supply - long range aquifer sustainability Raw water losses - transit, evaporation and seepage Environmental impacts and Ability to Permit Infrastructure Requirements Capital and Operations and Maintenance Costs Political Considerations

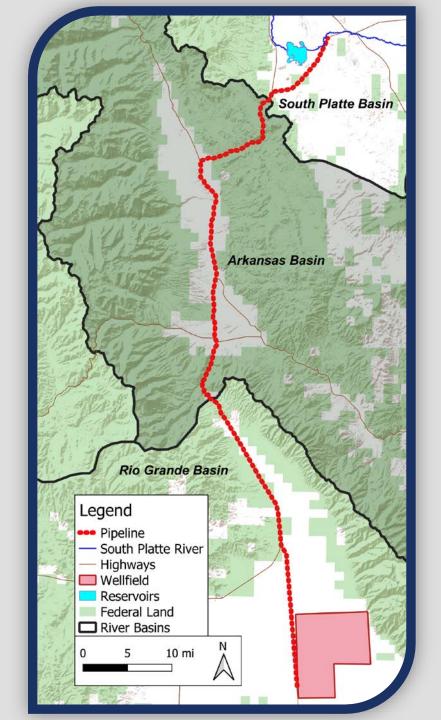


Water Supply Considerations Water Court and Supply Reliability


- All previous Confined Aquifer export proposals have failed to receive Water Court approval
- Anti-speculation requires an end user for water
 - Douglas County is not an end user
- Aquifer sustainability rules limit pumping
- Recharge of aquifer and replacement of pumping depletions at required locations will be difficult
- Lagged pumping depletions from retired wells decades of owed water
- Concentrated aquifer pumping at northeast part of aquifer may not be sustainable or accomplished without injury
- Discharge of confined aquifer water to surface streams arsenic and other chemicals may require expensive treatment
- River transit losses of ~12% delivering down the South Platte or Arkansas rivers
- Terminal raw water storage requirements in Douglas County


Aquifer Sustainability The SLV receives the least precipitation the state

Average Annual Precipitation (inches)



Must cross Federal lands to deliver water out of the San Luis Valley to Arkansas or South Platte Basins

- Permits required from multiple federal and state agencies
- Use of CDOT ROW does not avoid federal nexus

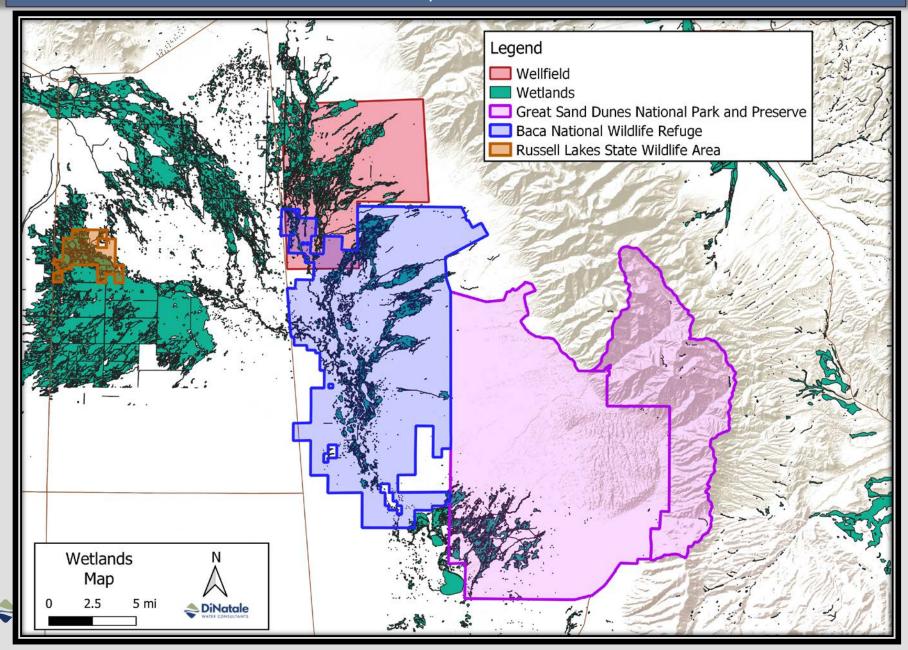
Federal Permitting

A project of this size requires a full Environmental Impact Statement

NEPA requires full alternatives analysis

Public Law 102-575 "Wirth Amendment" requirements on environmental review for impacts to Great Sand Dunes NP, Baca National Wildlife Refuge and Closed Basin Project

404b permitting requires Corps to authorize the Least Environmentally Damaging Practicable Alternative (LEDPA)


Unlikely that this project would be the LEDPA for Douglas County given the environmental impacts compared to South Platte alternatives

ECCV Northern Pipeline, Parker, and Castle Rock projects are existing or advanced planning inbasin projects with capacity to deliver additional water

Pumping will impact wetlands and Federal and State parks and wildlife areas

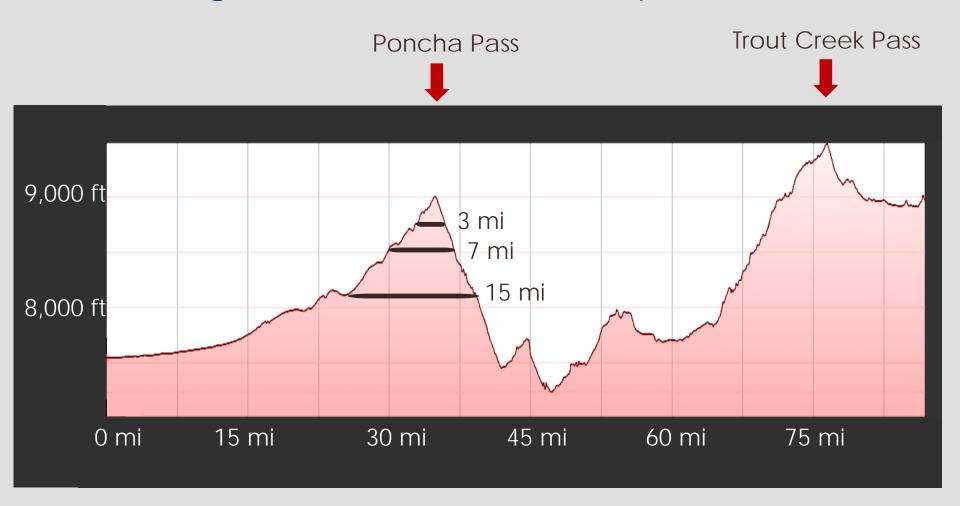
Arkansas Delivery Alternative

Requires approval of Cities of Aurora or Colorado Springs to use their Arkansas River water delivery infrastructure Colorado Springs Southern
Delivery System (SDS) pipeline
requires significant infrastructure
to convey from Colorado Springs
to Douglas County

Potential for Colorado Springs
SDS permits to be reopened if a
new source of water is
conveyed that was not
analyzed in the EIS

Not a feasible alternative unless Aurora or Colorado Springs indicate willingness to transfer SLV water from the Arkansas basin to the South Platte

Proposed Pipeline Terrain is Extremely Challenging


Renewable Water Resources Pipeline Profile US Hwy 285 Alignment

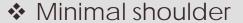
➤ Elevation gain: 5,759 ft ➤ Elevation loss: 4,344 ft

Renewable Water Resources Pipeline Profile Tunneling under Poncha Pass Option

Tunneling

- Microtunneling with a remotely operated boring machine only feasible for distances up to a few thousand feet
 - Costs in vicinity of \$2,000/ft
 - Not feasible to microtunnel Poncha Pass
- More conventional tunneling needed for longer distances
 - Larger bore required for equipment and operators
 - Highly variable costs, but estimated at \$8,000 to 10,000/ft = \$40-50 million/mile
 - Not cost-effective for a 36" pipeline

Tunneling through Poncha Pass

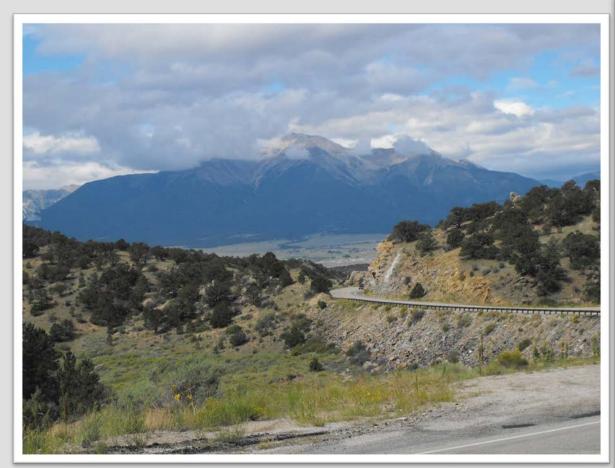

Tunneling Length	Pumping Lift Saved	Cost			
3 mi	250 ft	\$120 - 150 M			
7 mi	500 ft	\$ 280 - 350 M			
15 mi	900 ft	\$ 600 - 750 M			

Tunneling is not cost-effective for a 22,000 AFY project

Hwy 285 going over Poncha Pass

- Steep drop offs and hill slopes
- No easy pipeline corridor
- Forest Service land

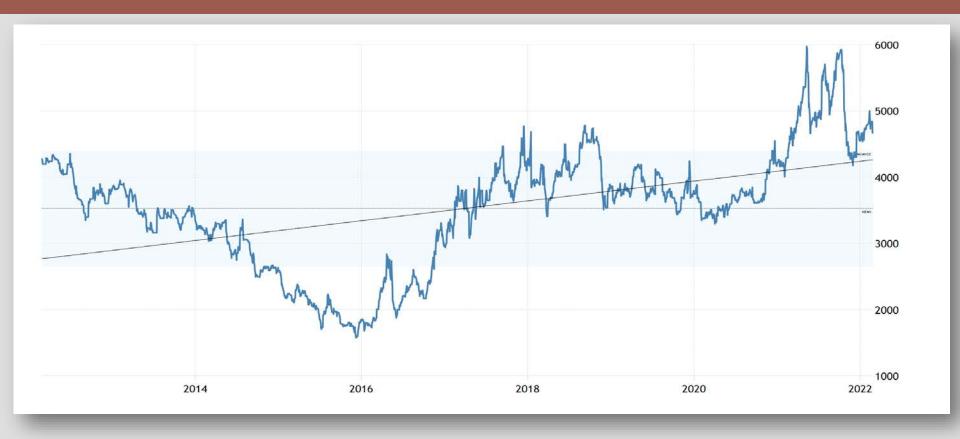
Hwy 285 about 2 mi east of Johnson Village



- No shoulder
- Cliffs surrounding road, requires blasting
- ❖ Forest Service land

Hwy 285 about 4 mi east of Johnson Village

- Minimal shoulder
- Riparian areas surrounding road
- ❖ Forest Service land



Feasibility-level Capital Cost Estimate

Cost Component		Cost
Wells and collection system	\$	20,000,000
Pipeline	\$	410,000,000
Pump stations	\$	80,000,000
Raw water diversion and storage	\$	20,000,000
Water treatment and diversion	\$	110,000,000
Subtotal construction	\$	640,000,000
Construction contingency at 25%	\$	160,000,000
Mitigation of construction impacts	\$	90,000,000
Total construction cost with contingencies	\$	890,000,000
Permitting, engineering, inspection, legal and admin at 25% of total construction	\$	230,000,000
Total infrastructure capital cost	\$	1,120,000,000
Total water pumped		22,000
Net water delivered after 12% stream transit loss in South Platte		19,360
Cost per net AF delivered - no water rights	\$	57,900
Water rights through water court and appeal (\$19,500/AF pumped)	\$	430,000,000
Water rights cost per net AF delivered	\$	22,200
Community Fund for San Luis Valley	\$	50,000,000
Total project cost	\$	1,600,000,000
Total project cost per AF	\$	82,600

History of Reference Prices for Steel February 2012 – February 2022

https://tradingeconomics.com/commodity/steel

Feasibility-level Annual Operating Costs

Annual Cost Component	unit	Unit cost	No. of units		Annual cost
	million				
Confined well pumping	gallons	\$ 235	7,168		1,700,000
	million				
Pumping from well collection to South Platte	gallons	\$ 1,478	7,168	\$	10,600,000
	million				
Water Treatment	gallons	\$ 2,500	6,308	\$	15,800,000
Augmentation plan operations for depletions	lump sum			\$	2,000,000
ragine ration plan operations for depictions	Tomp com			Ŧ	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Pipeline and PS labor and contract maintenance	lump sum			\$	2,000,000
Fund for infrastructure replacement	lump sum	1.5%	\$ 876,098,000	\$	13,100,000
Total annual cost for O&M only, no infrastructure					
financing				\$	45,200,000
Net AF delivered to Water Plant				\$	19,360
\$/AF O&M wholesale out of the Water Plant				\$	2,300
\$/1,000 gallons wholesale out of the Water Plant				\$	7.06

Example Project Financing Scenario

Item	Co	st/ Volume	Notes
Total Project Capital Cost	\$	1,600,000,000	Total Project Capital Cost
Estimated initial capital cost funded by			An estimate of upfront cash provided by the
Douglas County	\$	50,000,000	County
Amount to be financed	\$	1,550,000,000	
Bond interest rate		3.25%	Estimated bond rate
			Normal borrowing period for infrastructure
Length of bond, years		30	water supply projects
Annual bond payment		\$81,700,000	
			Net water delivered to Water Plant. Assumes no
Annual water delivery, AF		19,360	treatment losses
			Some of this cost could be defrayed by tap fees
Financing Cost per 1,000 gallons	\$	12.95	from new development
			Annual operating, maintenance and
O&M per 1,000 gallons	\$	7.06	replacement costs
Cost per 1,000 gallons for O&M and			Unit cost per thousand gallons if financing the
bond payments	\$	20.01	project through water rates

The cost does not include capital and O&M costs for transmission and distribution of treated water from the water plant to customers.

Summary 1 of 2

- SLV export project unlikely to survive lengthy and expensive water court process
- Aquifer may not be sustainable with concentrated volume of pumping at the edge of the aquifer
- Replacement of pumping depletions and recharge of aquifer requires cooperation of Rio Grande basin entities
- Wetlands impacts to Great Sand Dunes National Park, Baca Wildlife Refuge and surrounding areas cannot be mitigated with replacing depletions to the river
- Wirth Amendment requires a higher standard of review to the existing stringent EIS process
- Pipeline conveyance routes are extremely challenging and expensive to construct
- Unlikely to receive federal permits due to other less damaging and practicable alternatives (LEDPA)
- Will Aurora or Colorado Springs risk reopening existing permits and political fallout from conveying SLV water to Douglas County?

Summary 2 of 2

- What is Douglas County's unmet need that cannot be met under existing South Metro water provider plans?
- Aquifer Storage and Recovery in conjunction with Parker and Castle Rock projects and Rueter-Hess Reservoir could meet unincorporated County needs
- Preservation of Denver Basin aquifers by limiting large water provider pumping may be the best approach for many unincorporated County water users
- How do Douglas County residents to be served by the project finance construction, deliver water to end users and pay the annual O&M?
 - Is this water for new growth and financed by tap fees?
- Project cost estimates, though high, are likely understated
- Project is not financially feasible at 22,000 AFY infrastructure requires upscaling project to 100,000 AFY for economies of scale
- Water has not yet been proven to be physically and legally available in San Luis Valley

WATER COURT AND PERMITTING ARE POTENTIAL FATAL FLAWS

303 709 7044 **DiNataleWater.com**